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Abstract—Equations are derived from the Navier-Stokes and energy equations for the correlations
between velocities and temperatures at two points in a homogeneous turbulent field. Although
uniform mean velocity and temperature gradients are present, in the field, the turbulence decays
with time. Solutions are obtained by converting the equations to spectral form by taking their Fourier
transforms and assuming that the turbulence is sufficiently weak for triple correlations to be negligible
in comparison-with double correlations. Spectra of the turbulent heat transfer and of the mean square
temperature fluctuation are calculated as a function of dimensionless velocity gradient. The ratio of
eddy diffusivity for heat transfer to that for momentum transfer is also obtained. It is shown that
the eddy diffusivity ratio approaches one at high velocity gradients regardless of the value of Prandt]
number. However, its rate of approach to 1 is greatest for Prandtl numbers on the order of 1.
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NOMENCLATURE
transverse velocity gradient, dU,/dx;;
dimensionless transverse velocity grad-
ient, (t — 1)dU;/dx,;
transverse  temperature
dT/dx,;
constant that depends on
conditions;
arbitrary points in turbulent field;
Prandtl number, v/a;
instantaneous pressure;
distance from point P to P’;
distance vector from point P to P’;
component of r;
average temperature,
instantaneous temperature;
transfer term for temperature fluctua-
tions obtained by integrating the
quantity «;98/0x, in equation (34)
over all directions in wave number
space;
time;
reference time;
an averaged velocity component;
instantaneous velocity component;
fluctuating part of velocity component
defined by (4);
space co-ordinate.

gradient,

initial

Greek symbols
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thermal diffusivity;

spectrum function of 7u, defined by
(44);

dimensionless spectrum function of
Tty At — 1T3/(Tob);

Fourier transform of ru; defined by
(20);

dimensionless Fourier transforms of
71, vy1/(Job); _

Fourier transform of u;7" defined by
21);

spectrum function of 7* defined by
(45);

dimensionless spectrum function of
72, 124/(J,b%);

Fourier transform of 7+ defined by
(22);

dimensionless Fourier transform of
7, v8|Jolt — 1B,

equals 1 for i = jand equals 0 for i = j;
eddy diffusivity for momentum trans-
fer defined by (51);

dimensionless eddy diffusivity for

momentum transfer,
v5f2(£ — 10)3/25/“(0;
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eddy diffusivity for heat transfer
defined by (50);
¥, dimensionless eddy diffusivity for
heat transfer,
VAt — ) 2enlo;

€hs

¢, Fourier transform of E;" defined by
(24);

L, Fourier transform of 7p’ defined by
(25);

8, spherical co-ordinate in wave number
space;

K, wave number;

i*, dimensionless wave number,

V1/2(t — to)l/?.K;

o, wave number vector;

i, component of wave number vector;

v, kinematic viscosity;

Ps density;

T, fluctuating part of temperature de-
fined by (3);

&, spherical co-ordinate in wave number
space.

Subscripts

i, J, k, subscripts that have the values |, 2, or

3 and designate co-ordinate directions.
Superscripts
‘ referring to point P’;
-, overbar designates average value.

INTRODUCTION

TurBULENT flow and heat transfer in' passages
and boundary layers are usually analysed by
using a phenomenological approach. That is,
assumptions are introduced into the analysis
to relate the turbulent shear stress and turbulent
heat transfer to the mean flow. Summaries of
these analyses are given in references [1]-[3].
This approach is very useful and makes it
possible to generalize large quantities of experi-
mental data. In fact, it appears to be the only
feasible way, at present, of analysing the
complex flows occurring in boundary layers and
passages.

Although the phenomenological analyses are
very useful, we can obtain a great deal more
insight into the turbulent processes by using a
statistical approach based on the equations of
motion and energy. These studies should help
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to put our phenomenological analyses on a
sounder basis. Because of the complexity of
turbulence it is necessary to limit ourselves, at
Jeast at the beginning, to simple models, when
studying it from a fundamental standpoint.
Thus, Corrsin [4] and Dunn and Reid [5]
studied heat transfer in isotropic turbuience
with a uniform mean temperature gradient.
(The term “‘isotropic” as used here indicates
that the statistical properties of the turbulence
are independent of direction.) Recently, the
author analysed anisotropic turbulence in the
presence of a uniform vertical temperature
gradient and body force [6].

In the present paper we study the heat transfer
and temperature fluctuations in a statistically
homogeneous turbulent field with uniform
transverse velocity and temperature gradients.
The heat transfer in this case is somewhat
similar to that in passages and boundary layers,
although the turbulence in those cases would be
inhomogeneous because of the presence of walls,
The turbulence is assumed to be weak enough
for the triple correlations occurring in the
analysis to be negligible in comparison with
double correlations. That is, a first-order
analysis is considered, and the present results
evidently represent a limiting case. Higher
order corrections could be obtained by the
method used in [7] and {8]. As shown in [9],
even though triple correlations are neglected,
the turbulent field considered here has all the
features commonly associated with turbulence,
including a transfer of energy between eddies
of various sizes. Also, because of the presence of
the production and velocity-gradient transfer
terms in the correlation equations, the triple
correlation terms, which do not contain velocity
gradient, may be relatively less important than in
the case of no velocity gradient. Thus the results
may apply at moderate as well as low turbulence
Reynolds number.

The fluid properties are assumed constant,
so that the turbulent velocity field is independent
of the temperature field. Thus the results for
turbulence with a uniform velocity gradient
from [9] can be used for obtaining the turbulent
heat transfer and temperature fluctuations. It is
shown in {9] that a homogeneous turbulent field
with a uniform velocity gradient decays with
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time. Although energy is fed into the turbulence
from the mean velocity gradient, the production
of turbulence is never great enough to offset
the dissipation. The fluctuating temperature
field and the turbulent heat transfer will also
change with time.

Because of the decay of the turbulence with
time it will be necessary to produce it initially by
some means, for instance, by passing a stream
through a grid. Then various distances down-
stream from the grid will correspond to various
times of decay. Approximately uniform trans-
verse velocity and temperature gradients in the
stream could be produced by passing the flow
through parallel channels before passing it
through the grid. The temperature and velocity
of the fluid in each channel would be adjusted
to produce the desired velocity and temperature
gradients across the stream emerging from the
channels. Because of the higher velocities
through some parts of the grid it might be
necessary to vary the thickness of the wires in
the grid to produce an approximately homo-
geneous turbulence. Heating of the grid would
not be necessary because, as will be seen,
temperature fluctuations can arise from the
interaction of the turbulence and the mean
temperature gradient.

In order to proceed with the analysis, it is
necessary to construct, from the equations of
motion and energy, equations involving correla-
tions between fluctuating quantities at two points
in the fluid. These equations will be obtained in
the next section.

BASIC EQUATIONS
Consider first the energy or heat transfer
equation. This equation can be written for two
arbitrary points in the fluid P and P’ as

T 6(ukT) 2T

ot T 8xk 8xk8xk M
o7 o T 2T’

Y ( i 7 ) = 7 ’ (2)
ot ox, 0x,0x,

where a repeated subscript in a term indicates
a summation of terms, with the subscripts
successively taking on the values 1, 2, and 3.
The quantity T is the instantaneous temperature,
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ux is a velocity component, xi is a space co-
ordinate, ¢ is the time, and o is the thermal
diffusivity. The instantaneous quantities in (1)
and (2) can be divided into mean and fluctuating
components. Thus, in (1) we let

T=T+r (3
and
= Uy + ug. )
Then (1) becomes
oT BTUaTU(% U@T
o(rug) o*T o*r
% 8xk B (EXkaxk éxkaxk)' (5)

Averaging (5) over time or over a large number
of identical systems (ensemble average) gives

8T T

87uk
+ Uk 3xk6xk

xk 6xk

(6)

where the overbar indicates an average value.
In obtaining (6), use was made of the fact that

r = ux = 0. Subtraction of (6) from (5) gives

or O(Tug)  Otug
ot U a? +“kax Toxe | oxk
Pr
= 3)6];3)6]5 ’ (7)

Equation (7) applies at a point P in the fluid.
The corresponding equation for a point P’ is

or’ ,or T A+w)  or'u,
+ +uk4"7+ 7T T
Bxk 0x, 0x, ox,
ot
—ar—. (8
0x, 0x,

By a similar procedure it is shown in [9] from
the Navier-Stokes equations that

+ Ic + Uk ax (uur)
o — lop P
e = T aa T Ve )
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au
i Yt hw~w>
a k
0 7 7 1 c ! a‘zul.
) = — = Dy S (10)
0x, p 0x, 0X, 0X,

Note that (9) and (10) each represents three
equations since i and j can take on the values

2, or 3. To obtaln an equation for v-u
multlply (7) by u and (10) by r, add, and take
averages. This gives

8-ruj 87u —, T I =~
+ ‘|" Ukuj ax + 8))(7‘: ’TU]cuj
L — aU 8-ru 0
1-u,r
ox, 8xk ox,
160 P, i
e e A s SN (1)
) 3x1 8xk8xk 8xk8xk

In obtaining (11), fluctuating quantities were
placed inside the spacial derivative signs by
using the fact that quantities at one point are
independent of the position of the other point.
If r is the vector extending from x to x/,
(8/8x,)z, = &/0ry and (8/0xk)y, = —&/ory for
homogeneous turbulence. If, in addition, the
temperature and velocity gradients are uniform

and exist only in the transverse direction x,,
. 0 — oU, 00—
(Uk —U]g)a‘r;c"fuj—?xélégl:;’ruj (]2)
and (11) becomes
o— U, 0 — — oT
5}:7’“}. Ex;rzalfuj—}—uzujaé
oU, o — 7
—+— ’Tu 811 ax + a—r}c (Tuju,[ — 'rukuj)
— W ) g (19

The symbol 8;; = 1 for j = 1 and O for j = 1.

DEISSLER

By using a similar procedure, one obtains
from (8) and (9),

0 — oy, —oT
PP ur uc,'r(‘;i1 8 + wuiu, ox.
oy o — o — -
Er Iy or wt + e (wu, v — wugt’)
1 0 — uﬂ'
:;3;‘;1}7 —}—(a-{—v)a i (14)
and from (7) and (8),
0 — oU, 0 - or — —
é‘i TT + é; rz»a;l TT "I— 0;2(1427 + Tllg)
2
8 Prr
+ — (7'7' uk) — uprt’) = 2a Greore (15)

To obtain expressions for the correlations con-
taining pressure fluctuations, differentiate
equation (9) with respect to x; and (10) with
respect to x; and apply the continuity equation

o 1%
ous _ oy, (16)
axZ 8x
This gives, from equation (10)
1 &' éu, oU, 82(u;u,:) uu,
p Ox;0x, ax; ox,  éxox,  Bx)9x,
a7

Multiplying (17) by T, averagmg, and introducing
the variable r; = x, — x; gives

oU, oru, G,

“ox, or,

I &2’

—— = — 18
parjarj ( )

8rj r10rg

Where the velocity gradient is again assumed to
be uniform and in the x,-direction. Similarly,

1 &7 oU Gupr  SPugugt 19)
pordr, " ox, on ariory (

In order to simplify (13), (14), (15), (18), and
(19), and because of the physical significance of
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spectral quantities, we introduce the following
three-dimensional Fourier transforms [10]:

(1) = [2 yiReieTdx  (20)
wr(®) = [, y()er d ey
(0 = [, 8(x)er dx 22
uai(r) = 2, (et dx  (23)
pr() = [2, {perdn  (24)
() = [°_ {'(%)ei*r du (25)

where » is known as the wave number vector
and dx == dx,dxydrg. The magnitude of » has
the dimension 1/length and can be considered
to be the reciprocal of an eddy size. The dot
product x*r could also be written as «xry. Thus,
differentiation of, say, 7u, with respect to ri
will multiply its Fourier transform y; by ixg.
Inversely, multiplication of a quantity by ry
will differentiate its Fourier transform by «x
and multiply it by /. Taking the Fourier trans-
forms of (13), (14), (15), (18), and (19) and
assuming that the turbulence is weak enough for
triple correlations to be negligible in comparison
with double correlations result in

oy, oU, @y, o oU,
b o, T Moy, T O,
1
B bf’vl’ —{a + v) &%y (26)
&y, U, a , 8, oT
‘“gg ~ %, i 'y, 'i" 331}’2 ! ‘f‘ ?522

= % is — {a + v) «2 i 27

85 oU, 85  oT

o an o T ax, 2 T ) = 208 (28)
i wyxi . OUY
; il =2 - w2 Y2 g o, (29
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and
wyey ol

|
._;)-ZK}‘Z -2~;§~Y2*8—;~)

(30)

where use is made of the fact that wpxp =
«} -+ &5 - x5 = «% Substituting (29) and (30)
into the right-hand sides of (26) and (27),
letting  =j =2, and comparing the resulting
equations, shows that y, =y, for all times if
they are equal at an initial time. Here it will be
assumed that the temperature fluctuations are
initially zero, so that the above relation will hold,
If

U, /ox, = a (31)
and
oTjox, = b (32)
we finally obtain
8@);2 ar, %
— by + [ S (;,l—ﬁ l)vxz} Ya
(33)
and
08 08
g =~ 2y, 2uts. (34

SOLUTION OF SPECTRAL EQUATIONS

In order to obtain solutions of (33) and (34)
it will be assumed, as in [9], that the turbulence
is initially isotropic, although it is not, of course,
isotropic at later times.

The expression for ¢, in (33), which is the
Fourier transform of wuu,, has already been
obtained in {9]. This expression is

Jo {rc + [y + ary(t — 1) +

oy =" + 15 1} + 1)
2 122kt

. exp {wzv(t — 1o}

{Kg e % KAt — 1) aryxy (8 — ta)}} (35)
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where J, and ¢, are constants that depend on

initial conditions. For a Prandtl number of |
the solution of (33) is

k% exp {21/(1 — 1)

[Kz 4 aryky(t — to) + % a*(t — to)z] }),2
_ ot + e 4 @yt — 1) + 5] + 1)

127%ai,

. b tan—? (ﬂ%m “*"f[Kb Ko + aKl(t — tO)a K3]
(36)

where f is a function of integration. The method
of solution is given in [11]. In order to evaluate
£, it is assumed that the temperature fluctuations
are zero for t = t,. Thus substituting y, = 0
for t = t, in (36),

f(Kl’ Ka, K3)
_ Jol oG P )

12n%ax, btan™?

K
o O
or

Sl 13 + ares(t — 15), x4]

o+ [+ a1 — 1) +

12n%ax,

ke + aKl(t
(s} +

kSR

.btan—- )1,2 (38)

Substitution of (38) in (36) gives, for the Fourier
transform of 7u, for a Prandtl number of 1,

JO_ {K,, + [xe + af}(t - 10)]%4“ Ky 513 + Ks)l/z
2 127%ax, k?
Lbexp{—2u(t — to)
[x2 + axpeolt — to) + § a*i(t — 10)*]}
Ky + ary(t — IO)J

o+
(39

. [tarr1 (»— + tan—1-

)1/2
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For Pr = 1, the solution for y, can be written as
b Jo(K +- &)

1272

it 4 ey 4 @t — 1P+ G2

oxp {10 1o )

ar,

Ve 77 o
Cark?

— 2v(t — to) [K® + aryrs(t — 15)

+¥abee — 1)

Kyt aK,{l ~1,) 1
) J‘K._. K’I‘ _+— gz - &5

exp{»l[(l/Pr) ] Vg( y 532

ax,
The expression for the Fourier transform of

7rfor a Prandtl number of | is obtained by
solution of (34):

e

(39a)

JO{K + kgt ary (t — to)]? + K2}2 b2

> S
exp {— 2u(t — t,) [K? + axxo(t — to)
T+ ha (1 - 1)
B Ky ke 7— akl(t — to)]?
[tan (K 3)1 2 -~ tan~ ( : *_ Kz)l 2 ’

(40)

where & was set equal to zero for t = /.

The spectral quantities y, and 8 are functions
of the components of the wave number vector
» as well as of its magnitude. It is somewhat
easier to interpret quantities that are functions
only of the magnitude «. We can obtain such
quantities in the usual way by integrating y,
and 8 over all directions in wave number space.
Thus, define a quantity I, by the equation

Lyx) -- f({ ya(n) dA(x)

where A is the area of the surface of a sphere
of radius «. Then, since

(41)

Ty = [ Ty de (42)
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[let =0 in (20)], I, d« gives the contribution
from wave number band d« to 7i,. Thus a
plot of I, against « shows how contributions to
Tu, are distributed among the various wave
numbers or eddy sizes,

Equations (39) and (40) can be written in
terms of spherical co-ordinates by setting

Ry =K COSPSING, «, = «sindsinéb,

Ky = Kk COS 0. 43)
Then (41) becomes
Iy() = [T [ vali, b, O)*sin 0 dp d6. (44)

A similar equation for 8 integrated over all
directions in wave number space is

A = [7 [ 8(x. 4, O)* sin 0 dp d6.  (45)
Letting r = 0 in (22),
= [* Adx (46)

so that, as in the case of I}, 4 d« gives contri-
butions from the wave number band d« to 72,

~0-020(—
a*= (1-4) dbi/dna

~0-018f~

~0-016(—
~0:01 4~
v
~0-012}—

D010~

-D-008—

T3 = ¥2(¢-1,1 T /(s )

i 1 é
< o A
g g8 8
” rs &

o o4 08 12 6 20 24 2:8 32
o= Mg 2,

{a}
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RESULTS AND DISCUSSION

Discussion of computed spectra

Equations (39), (40), (44), and (45) can be
converted to dimensionless form by introducing
the variables y;, 6%, «*, a*, I, and 4*. (These
quantities are defined in the Nomenclature.)
Calculated spectra of 7u, and % for various
values of dimensionless velocity gradient a*
are plotted in Figs. 1 and 2. The integrations in
(44), (45), and (39a) were carried out numerically.

= G006 —

in etirn) du, fdx,

=~0-Q05

% o
§ 0004
~
3
3-0-003
s
®a

Iz

~0-002

~ 0001

o 05 1o 'S 20 25 30
K V2 2

(b)

-0.024 —
@ (-4} QU S,

~0-022

) 5 2.0 25 30 35 20
7 T

{c}

FiG. 1. Dimensionless spectra of -4, for uniform transverse velocity and temperature gradients.
(a) Prandt]! number = 1, (b) Prandtl number = 0-01. (c} Prandtl number = 10,
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00141 a*= (/1) dU/dxz
4
0012~
1
0-0101—
[¢)
%
>’ 0-0081—
~ 10
<
N;
* 0-006[~
<
20
0-004/—
0002}~ 30
| | I

|
[¢] -4 08 1.2 6 . 20 2.4 2.8 32
= R4 V2

Fi1G. 2. Dimensionless spectra of 72 for uniform trans-
verse velocity and temperature gradients. Prandtl
number = 1,

When plotted using the similarity variables
shown, the curves for zero velocity gradient do
not change with time, so that comparison of the
various curves indicates how the velocity
gradient will alter the spectrum. Thus the curves
in Figs. 1 and 2 that lie above those for a* =0
indicate that for those cases 7u, or 7% at a parti-
cular time is greater than it would be for no
velocity gradient. The turbulence itself is, of
course, decaying with time. Fig. 1 shows the
effect of Prandtl number on the spectrum of

Tuy. As Prandtl number increases, the peaks of
the spectra move toward the higher wave
number region, the change being greater at the
lower values of a*. High wave numbers corres-
pond to small eddies, inasmuch as the wave
number represents the reciprocal of an eddy
size (or wave length).

For zero velocity gradient the results are the
same as those obtained by Dunn and Reid [5].
As the velocity gradient increases, the peaks
of the spectra of 7u, move to lower wave
numbers because the spectrum of the production
term bay, in (33) moves to the left (see Fig. 5,
reference [9]). Since the production term in the
equation for the spectrum of 72, (34), is propor-
tional to y,, the peaks of the spectra of 72 also
move to lower wave numbers.

The spectra change from approximately
symmetric curves to curves having more gradual
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slopes on the high wave number sides as a*
increases. The changes in shape of the spectra
are apparently caused by a transfer of acitivity
from low wave numbers to high wave numbers
or from big eddies to small ones. This transfer is
generally associated with triple correlations [7],
but in the present case, where triple correlations
are neglected, it is associated with the velocity
gradient. Thus we can interpret the second terms
in (33) and (34) as transfer terms. In order to do
this, note that r, 8ru,/or; in (13) is related to
Ky Oy,/0xy in (33) by

67.;‘;( _ “ 8’)/2 ixer
rzbag— —J_wklé;;e dK. (47)
For r = 0, this becomes
* Oy
‘[Mw Kl ’6‘;‘2 du = (48)
Similarly, in (34)
o o8
—dn = 4
J.—co K 6}(2 e ( 9)

Thus these terms give zero total contribution to
drug/0t or to d7%/6t. However, they can alter
the distribution in wave number space of contri-
butions to druy/dt or &7%/dt, and thus can be
interpreted as transfer terms. A similar term in
the equation for ﬁi—u, was obtained in [9].

The expressions for the transfer terms in
(33) and (34) can be integrated over all directions
in wave number space by using equations
similar to (44) and (45) in order to obtain
quantities that are functions only of « and
dU,/dx,. A plot of the integrated transfer term
corresponding to 72 is given in dimensionless
form for a Prandtl number of 1 in Fig. 3.
This term corresponds to the second term in (34)
with the exception that it has not been multi-
plied by a. The total area enclosed by each
curve is zero, in agreement with (49). The curves
are predominately negative at low wave numbers
and positive at higher ones, so that, in general
contributions to 7¢ are transferred from low
wave numbers to high ones. In this way the
higher wave number portions of the spectra
of 7% in Fig. 2 are excited by the transfer of
activity into those regions, so that the shapes
of the spectra are altered. This effect is similar to
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0-004— a®s {r-4,} d & /dx2
4
Z
0-002f— )
J 2
o N 0
Y 5
<
0002k
o~
Y
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Nlo-004f—
~-0-006—
.0 L N ] | | | S | | | }
0008 —5 5% ] F3 20 24 28 32 36 40

K=y 2 ’3)"2 %

Fig. 3. Dimensionless spectra of transfer term due to mean velocity gradient in spectral equation for 2.
Prandtl number = 1.

that due to triple correlations [7]. In the present
case a natural explanation of the effect is that
the transfer to higher wave numbers is due to the
stretching of the vortex lines in the turbulence
by the velocity gradient. The velocity gradient
should also be able to compress some of the
vortex lines, particularly at low velocity gradients
where the orientation of the vortex lines would
tend to be random. This might explain the small
amount of reverse transfer at low wave numbers
and low velocity gradients in Fig. 3.

Production, temperature fluctuation, and conduc-
tion regions

By analogy with the equation for turbulent
energy in [9], one can interpret the third term
in (34) as being responsible for the production of
temperature fluctuations by the action of the
mean temperature gradient on the turbulent
heat transfer 7u,. In the corresponding produc-
tion term in the turbulent energy equation [9]
the mean velocity gradient does work on the
turbulent shear stress. The last term in (34) is
the conduction or dissipation term and tends to
destroy the temperature fluctuations by con-
ducting heat away from regions of high local
temperature. This action is similar to the action
of viscosity on the velocity fluctuations.

The production and conduction terms in (34)
can be integrated over all directions in wave

number space by substituting I, and 4 for v,
and & respectively in those terms. These terms,
together with the spectrum of 7¢ are plotted in
normalized form in Figs. 4a, b for two values
of a* and a Prandtl number of 1. For the low
dimensionless velocity gradient the production,
temperature fluctuation, and conduction regions
are but slightly separated. On the other hand, for
the high velocity gradient (g* = 50), the pro-
duction takes place mostly in the low wave
number or big eddy region and the conductive
attenuation occurs in the high wave number
region. The conductive attenuation occurs
mostly in the high wave number region because
conduction effects tend to “smear out” the
small-scale temperature fluctuations more readily
than the large ones.

We can summarize the history of the tempera-
ture fluctuations at high velocity gradients
somewhat as follows: the temperature fluctua-
tions are produced by the mean temperature
gradient mainly in the big eddy region. This
temperature fluctuation activity or “energy” is
transferred from the big temperature eddies to
smaller ones by the action of the velocity
gradient. Finally the temperature “energy” is
dissipated by conduction effects in the small
eddy region.

The separation at high velocity gradients of the
three regions shown in Fig. 4b is similar to the
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(b)
FiG. 4. Comparison of production, temperature
fluctuation and conduction spectra from spectral
equation for 7u. Prandtl number = 1. Curves are
normalized to same height.
(a) a* = (t — t,) dU/dx, = 1.
(b) a* == (t — 1,) dU;/dx, = S0.

separation of the production, energy-containing,
and dissipation regions associated with the
turbulent energy wu;/2. For comparison, a plot
of these regions for an a* of 50 is given in Fig. 5.
These curves were obtained from equations
given in [9].

Temperature—velocity correlation coefficient

The temperature-velocity correlation coeffici-
ent as introduced by Corrsin [4], is defined as
Tuo/(7 w)V2. For perfect correlation between +
and u,, this coefficient will have a value of 1.
The coeflicient can be calculated by measuring
the areas under the spectrum curves in Figs. |
and .2 and in Fig. 5 of [9]. A plot of the tempera-
ture-velocity correlation coefficient against
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FiG. 5. Comparison of production, energy, and

dissipation spectra from spectral equation for wu;.
[a* = (¢t - 1,y dU,/dx, = 50].

dimensionless velocity gradient is given for a
Prandtl number of | in Fig. 6. For zero velocity
gradient, perfect correlation between the tem-
perature and velocity fluctuations is indicated.
It should be mentioned that this result applies
only to a Prandtl number of 1. The Prandtl
number dependence of the coefficient for zero
velocity gradient is given by equation (78) of
reference [5]. As the velocity gradient increases,
Fig. 6 indicates that the correlation between the
temperature and velocity is partially destroyed.
At a value of a* of 50 the correlation coefficient
has decreased to about 0-5.

Ratio of eddy diffusivities for heat transfer to
momentum transfer
The eddy diffusivities for heat transfer and for
momentum transfer are defined as

k 7u,
“ 7 4Tdx, G0
and
 kuu
= dUdx, Gh

The eddy diffusivity ratio e/« is of considerable
importance in the phenomenological theories
of turbulent heat transfer and is usually assumed
to be one [1, Section E]. In fact that assumption
gives the best agreement between analysis and
experiment, except, possibly at low Prandtl or
Peclet numbers [12], [13]. A dimensionless eddy
diffusivity for heat transfer v¥/3(t — 1,)*2ep/Jo
can be obtained from the areas under the curves
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Fii. 7. Variation of ratio of eddy diffusivity for heat transfer to that for momentum transfer
with dimensionless velocity gradient.

in Fig. 1. A similar dimensionless eddy diffusi-
vity for momentum transfer is given in Fig. 9
of reference [9]. The ratio e/e is plotted in
Figs. 7 and 8. Fig. 8 is included inasmuch as the
eddy diffusivity ratio for a* = 0 is not given in
Fig. 7. This case corresponds to isotropic turbu-
lence and can be calculated from the results in
[5] and [9]. For small velocity gradients ep/e is
greater than 1 except for the low Prandtl
number. However, as the velocity gradient
increases, e/e ultimately decreases and
approaches 1 at large velocity gradients. This
is shown on a spectral basis in Fig. 9, where the
dimensionless spectra of ¢, and e for a Prandtl

number of 1 are compared. As the velocity
gradient increases, the spectrum curves of &
and ¢ approach each other rapidly in the high
wave number or small eddy region and some-
what more slowly in the low wave number
region.

The approach to 1 of e/e as the velocity
gradient increases, occurs at all Prandtl numbers.
This can be seen by inspection of (39a) which
indicates that for large values of the velocity
gradient g, the effect of Prandtl number on y,
and thus on € is negligible. However, the effect
of Prandtl number is much greater at low values
of Pr than at higher ones. This is because the
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terms in (39a) which contain Prandtl number
vary much more rapidly with low values of that
quantity than with high ones.

Fig. 7 indicates that as the velocity gradient
increases, the approach of /e to 1 is most rapid
for Prandtl numbers on the order of one and
least rapid for very low Prandtl numbers.

It is of interest to compare the various terms
in the differential equations for y,/b and ¢,/
at high values of a. The quantities v,/b and ¢,,/a
will, when integrated over wave number space,
give ¢, and e. Equation (33) can be written in
terms of y,/b as

0014—

a*={1-1,) dUh/dxe

0-012f—
Q-010—

0-008|—

0-0061—

0-004

0-002
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8, )
ot b ok,
Kyky (V' i Ava
¢ 1 2a r (7’) (Pr 1 |) i ([;)
(52)
From [9]
Hpula) . Aprz/a)
ot 1 By
aryky (¢ 2 é
= fat zw%j (7?) T2 gz baa — 2vi® (;2)
(53)

These equations for y,/b and for é,/a are the
same except for the last term in (52) and the
last two terms in (53). It appears, however, from
the forms of the equations that these terms
should not be important for high values of a.
The next to the last term in (53) arises from the
pressure fluctuations.

Although (52) and (53) are similar for large
values of g, the initial conditions for y,/h and
éqp/a are different, the initial form for ¢, being
given by equation (43) in reference [9], whereas
y, is initially zero. However, a numerical check
indicates that y,/b and ¢,/a, as well as the
integrated values ¢, and e, are essentially equal

SPECTRUM OF ¢;
<= ——— SPECTRUM OF ¢~

| | | |

| |
) 04 08 12 16

20 | 24 2B 32 36 40

K Y21V 2

F1G. 9. Comparison of spectra of e, with those of e. Prandt! number = 1.
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for large values of a*. This suggests that the
initial conditions have a negligible effect on the
results for large times or velocity gradients.

It is hard to make comparisons between the
present results and a steady state pipe flow or
boundary layer inasmuch as a* contains time.
However, we can make a rough estimate of the
order of magnitude of a* for a steady state case
as follows. From the turbulent energy spectra
in [9], Fig. 7 .~ 1. Then an average
length, 1/« ... =L, associated with the
turbulence is [v(t — £,)]V/%. Let 8 be the radius
of the pipe or the thickness of the boundary
layer and U be a characteristic mean velocity.
Letting ¢t — t, ~ L2/v (see above), dU,/dx, ~ U/3,
and L ~ 0-38, a* will be on the order of 0-1U3§/v.
Thus for values of mean flow Reynolds numbers
usually obtained in the turbulent flows, ep/e,
according to Fig. 7, will probably be close to 1
for gases and liquids. For liquid metals /e may
be less than 1, in qualitative agreement with those
analyses which use a modified mixing-length
theory to account for heat conduction to or
from an eddy as it moves transversely in a mean
temperature gradient [13], [14]. In making the
above comparisons, it should, of course, be
remembered that the present calculations are
for an idealized case which has only a partial
correspondence to a passage or boundary layer.
A discussion of possible differences between
the two cases is given in reference [15].
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Résumé—A partir des équations de I'énergie et de Navier-Stokes, on obtient des équations pour les
corrélations entre températures et vitesses en deux points dans un champ turbulent homogéne. Bien
que la vitesse moyenne soit uniforme et qu’il existe des gradients de température dans le champ, la
turbulence décroit en fonction du temps. On obtient les solutions en mettant les équations sous forme
spectrale, en prenant leur transformées de Fourier et en supposant que la turbulence est suffisamment
faible pour que les corrélations triples soient négligeables devant les corrélations doubles. Les spectres
de la transmission de chaleur turbulente et du carré moyen des fluctuations de température sont
calculés en fonction du gradient de vitesse sans dimensions. On calcule également le rapport de la
diffusivité thermique turbulente au transport de quantité de mouvement. On montre que le rapport
de diffusivité turbulente tend vers 'unité aux gradients de vitesses élevés, quel que soit le nombre de
Prandtl. Toutefois, il tend plus rapidement vers 1 pour les nombres de Prandtl voisins de I'unité.
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Zusammenfassung—Zur Korrelation von Geschwindigkeiten und Temperaturen an zwei Punkten
eines homogenen turbulenten Feldes wurden Zusammenhidnge aus den Navier-Stokes-Gleichungen
und den Energiegleichungen ermittelt. Trotz einheitlicher mittlerer Geschwindigkeits- und Tempera-
turgradienten im Feld nimmt die Turbulenz mit der Zeit ab. Losungen wurden durch Umschreiben der
Gleichungen in Spektraiform mit Hilfe ihrer Fouriertransformationen erhalten und der Annahme,
dass die Turbulenz fiir Dreifachkorrelationen gegeniiber Doppelkorrelationen vernachldssigbar
gering ist. Die Spektra des turbulenten Wirmeiiberganges und der mittleren quadratischen Tem-
peraturschwankung wurden als Funktion dimensionsloser Geschwindigkeitsgradienten berechnet.
Das Verhiltnis von turbulentem Energie- zu Impulsaustausch liess sich ebenfalls ermitteln. Es wird
gezeigt, dass sich dieses Austauschverhiltnis beigrossen Geschwindigkeitsgradienten unabhingig von
der Grosse der Prandtlzahl dem Wert Eins ndhert, die Anndherungsgeschwindigkeit an 1 aber fiir
Prandtlzahlen in der Grossenordnung 1 am grossten ist.

Annoramusa—M:s vpasieunit Hanbe-Crokca 1 liepenoca DHepruu BRIBEACHLL Y PaBHONMSL LI
KOPPENANMN 3HAYEHUH CKOPOCTH U TEMIICPATY DB B JBY X TOUKAX 0THOPOJHOTO TYPHYIEHTHOrO
nosx. HecmoTps Ha Haluume B I0Je MOCTOAHHBIX CPENHUX IPAJMEHTOB CKOPOCTU W TEM-
nepaTypsl, TypOyJeHTHOCTb B HeM 3aTyXaeT ¢ TeueHHMeM BpeMmenu. DPenieHusi moayyenst
NyTEM CBEJlEHNA YDABHEHUH K CHERTPAILHOMY BILY, HCIOIb30BAB npeolpasoBanusa Oypee
U UPeISIOKUB, UT0 TYpOYAeHTHOCT AOCTATOUHO ¢aaha, UTOOE peHelperarb KOppeIAuamu
MEKIY TpeMA BeIUUMHAMHU ¥ HPHMEHATh KOPPEIAIMH MEHNY ABYMS BeianuunHaMu. CrieRTpsl
TypOyJIeHTHOTO TeII000MeHA I CPefHEKBAIPATUUHOIO KOjeGAHUSA TeMIepaTyphel paccHi-
TaHbl Kak QYHKUMA Oe3pasMepHoOro rpajuenrta ckopoctu. Tawkike TMOIyYeno OTHOIIEHHe
koaddurimentos TudPysnu BUXPS TIPH JiepeHoce Terula U liepeHoce uMmiyibca. Ioxasauo,
uTo npu GOJBNIMX I'PASMEHTAX CROPOCTU Oes yvaéra BAMAHUA Kpurepusi [Ipanjras suavensne
orHouwleHust KOpPOUIMEHTOB AuGPYsuY BUXDPA UPUOTHKAETCA K €JAMHMIE, 4 TPH YUGTaX
ITpamjria nopsaka I oTo npuiiKeRne NPOUCXOJUT B KPATUANIIMA [IPOMEHIYTOK BpeMenn.



