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A~~act-Equations are derived from the Navier-Stokes and energy equations for the correlations 
between velocities and tern~mtu~s at two points in a homogeneous t~bulent field. Although 
uniform mean velocity and tem~rature gradients are present, in the field, the turbulence decays 
with time. Solutions are obtained by converting the equations to spectral form by taking their Fourier 
transforms and assuming that the turbulence is sufficiently weak for triple correlations to be negligible 
in comparisonwith double correlations. Spectra of the turbulent heat transfer and of the mean square 
temperature fluctuation are calculated as a function of dimensionless velocity gradient. The ratio of 
eddy diffusivity for heat transfer to that for momentum transfer is also obtained. It is shown that 
the eddy diffusivity ratio approaches one at high velocity gradients regardless of the value of Prandtl 

number. However, its rate of approach to 1 is greatest for Prandtl numbers on the order of 1. 

b, 

J 0, 

P, P’, 
Pr, 
PP 
r, 
r, 
rk, 

2 
Tt, 

t, 
to, 
uk, 

irk, 
uk, 

Xk, 

B 

NOMENCLATURE 

transverse velocity gradient, dU,[dx,; 
dimensionless transverse velocity grad- 
ient, (t - to)dUxjdxz; 
transverse temperature gradient, 
dT]dx,; 
constant that depends on initial 
conditions; 
arbitrary points in turbulent field; 
Prandtl number, v/u ; 
instantaneous pressure; 
distance from point P to P’; 
distance vector from point P to P’; 
component of r; 
average temperature; 
ins~n~neous temperature; 
transfer term for temperat~e fluctua- 
tions obtained by integrating the 
quantity IC$%/&, in equation (34) 
over all directions in wave number 
space ; 
time ; 
reference time; 
an averaged velocity component; 

instantaneous velocity component; 
fluctuating part of velocity component 
defined by (4) ; 
space co-ordinate. 
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Greek symbols 
thermal diffusivity; 
spectrum function of ‘;;;: defined by 
(44); 
dimensionless spectrum function of 

7u2, vyt - ~~)~~~(~~b); 
Fourier transform of q defined by 
(20) ; 
dimensionless Fourier transforms of 

7uj, W/(&b) ; 
Fourier transform of i? defined by 
(21); 
spectrum function of 7 defined by 
(45); 
dimensionless spectrum function of 
z v~A~(~~bz) ; 

Fourier transform of 7 defined by 
(22) ; 
dimensionless Fourier transform of 
7TI, vS/[&(t - to)b2] ; 

equals 1 for i = j and equals 0 for i S j; 

eddy diffusivity for momentum trans- 
fer defined by (51); 
dimensionless eddy diffusivity for 
momentum transfer, 
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Eh, 
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eddy diffusivity for heat transfer 
defined by (50); 
dimensionless eddy diffusivity for 
heat transfer, 

@‘(t - t,)3’2 q&, ; 
Fourier transform of 7 defined by 
(24) ; 
Fourier transform of 7 defined by 
(25) ; 
spherical co-ordinate in wave number 
space ; 
wave number ; 
dimensionless wave number, 

lw(t - to)%; 
wave number vector; 
component of wave number vector; 
kinematic viscosity; 
density; 
fluctuating part of temperature de- 
fined by (3); 
spherical co-ordinate in wave number 
space. 

Subscripts 
i, j, k, subscripts that have the values I, 2, or 

3 and designate co-ordinate directions. 

Superscripts 
I 
, referring to point P’; 

, overbar designates average value. 

INTRODUCTION 

TURBULENT flow and heat transfer in passages 
and boundary layers are usually analysed by 
using a phenomenological approach. That is, 
assumptions are introduced into the analysis 
to relate the turbulent shear stress and turbulent 
heat transfer to the mean flow. Summaries of 
these analyses are given in references [l]-[3]. 
This approach is very useful and makes it 
possibIe to generalize large quantities of experi- 
mental data. In fact, it appears to be the only 
feasible way, at present, of analysing the 
complex flows occurring in boundary layers and 
passages. 

Although the phenomenological analyses are 
very useful, we can obtain a great deal more 
insight into the turbment processes by using a 
statistical approach based on the equations of 
motion and energy. These studies should help 
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to put our phenomenological analyses on a 
sounder basis. Because of the complexity of 
turbulence it is necessary to limit ourselves, at 
least at the beginning, to simple models, when 
studying it from a fundamental standpoint. 
Thus, Corrsin [4] and Dunn and Reid [5] 
studied heat transfer in isotropic turbulence 
with a uniform mean temperature gradient. 
(The term “isotropic” as used here indicates 
that the statistical properties of the turbulence 
are independent of direction.) Recently, the 
author analysed anisotropic turbulence in the 
presence of a uniform vertical temperature 
gradient and body force [6]. 

In the present paper we study the heat transfer 
and temperature fluctuations in a statistically 
homogeneous turbulent field with uniform 
transverse velocity and temperature gradients. 
The heat transfer in this case is somewhat 
similar to that in passages and boundary layers, 
although the turbulence in those cases would be 
inhomogeneous because of the presence of walls. 
The turbulence is assumed to be weak enough 
for the triple correlations occurring in the 
analysis to be negligible in comparison with 
double correlations. That is, a first-order 
analysis is considered, and the present results 
evidently represent a limiting case. Higher 
order corrections could be obtained by the 
method used in 173 and [S]. As shown in [9], 
even though triple correlations are neglected, 
the turbulent field considered here has all the 
features commonly associated with turbulence, 
including a transfer of energy between eddies 
of various sizes. Also, because of the presence of 
the production and velocity-gradient transfer 
terms in the correlation equations, the triple 
correlation terms, which do not contain velocity 
gradient, may be relatively less important than in 
the case of no velocity gradient. Thus the results 
may apply at moderate as well as low turbulence 
Reynolds number. 

The fluid properties are assumed constant, 
so that the turbulent velocity field is independent 
of the temperature field. Thus the results for 
turbulence with a uniform velocity gradient 
from [9] can be used for obtaining the turbulent 
heat transfer and temperature fluctuations. It is 
shown in 191 that a homogeneous turbulent field 
with a uniform velocity gradient decays with 
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time. Although energy is fed into the turbulence 
from the mean velocity gradient, the production 
of turbulence is never great enough to offset 
the dissipation. The fluctuating temperature 
field and the turbulent heat transfer will also 
change with time. 

Because of the decay of the turbulence with 
time it will be necessary to produce it initially by 
some means, for instance, by passing a stream 
through a grid. Then various distances down- 
stream from the grid will correspond to various 
times of decay. Approximately uniform trans- 
verse velocity and temperature gradients in the 
stream could be produced by passing the flow 
through parallel channels before passing it 
through the grid. The temperature and velocity 
of the fluid in each channel would be adjusted 
to produce the desired velocity and temperature 
gradients across the stream emerging from the 
channels. Because of the higher velocities 
through some parts of the grid it might be 
necessary to vary the thickness of the wires in 
the grid to produce an approximately homo- 
geneous turbulence. Heating of the grid would 
not be necessary because, as will be seen, 
temperature fluctuations can arise from the 
interaction of the turbulence and the mean 
temperature gradient. 

In order to proceed with the analysis, it is 
necessary to construct, from the equations of 
motion and energy, equations involving correla- 
tions between fluctuating quantities at two points 
in the fluid. These equations will be obtained in 
the next section. 

BASIC EQUATIONS 

Consider first the energy or heat transfer 
equation. This equation can be written for two 
arbitrary points in the fluid P and P’ as 

(1) 

(2) 

where a repeated subscript in a term indicates 
a summation of terms, with the subscripts 
successively taking on the values 1, 2, and 3. 
The quantity F is the instantaneous temperature, 

uk is a velocity component, xk is a space co- 
ordinate, t is the time, and a is the thermal 
diffusivity. The instantaneous quantities in (1) 
and (2) can be divided into mean and fluctuating 
components. Thus, in (1) we let 

F=T+7 

and 

i&c = uk + uk. 

Then (1) becomes 

(3) 

(4) 

aT a7 
-at+&+ &ix;+ u,;;;+ &j$ 

+ a~~~ =a 
( gk +a,$&,)' (5) 

Averaging (5) over time or over a large number 
of identical systems (ensemble average) gives 

- 
aaT -;+ ~k;x;+!??F&~_ 

axkaxk 
(6) 

where the overbar indicates an average value. 
In obtaining (6), use was made of the fact that 
T = E = 0. Subtraction of (6) from (5) gives 

- 

g+ Uk ~;k+uk~k+5;~_~ 

aa, 
=az&’ (7) 

Equation (7) applies at a point P in the fluid. 
The corresponding equation for a point P’ is 

a(7’24;) ax ;+ u;~F+u;~;+___ _ 
n k * x 

av 
=aax:ax: (8) 

By a similar procedure it is shown in [9] from 
the Navier-Stokes equations that 
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and 

Note that (9) and (10) each represents three 
equations since i and j can take on the values 
1, 2, or 3. To obtain an equation for iu:, 
multiply (7) by U: and (10) by T, add, and take 
averages. This gives 

la;;;; = __.__ 
P ax; 

t (11) 

In obtaining (1 l), 
placed inside the 
using the fact that 
independent of the 

fluctuating quantities were 
spatial derivative signs by 
quantities at one point are 
position of the other point. 

If r is the vector extending from x to x’, 
(a/&X&, = 8/&k. and (a/ax&&f = -a/ark for 
homogeneous turbulence. If, in addition, the 
temperature and velocity gradients are uniform 
and exist only in the transverse direction x2, 

a 7 au, a--; 
(ui - uk)-TU, = -.- r2-7uj 

ark ax, ar, (12) 

and (11) becomes 

a --; au, a 7 -, a- 
at TUj + ajj rz g TUj + u2Uj ax2 

1 

=- 

The symbol S1j = 1 for-j = 1 and 0 forj # 1. 

By using a similar procedure, one obtains 
from (8) and (9), 

and from (7) and (8) 

a- - 
+ a&- (&; ) - @TT’) = 2U 

k 

To obtain expressions for the correlations con- 
taining pressure fluctuations, differentiate 
equation (9) with respect to xi and (10) with 
respect to xi and apply the continuity equation 

aui au; _ o 
_--_ . 

aXi - ax; 

This gives, from equation (10) 

(16) 

I ay a2uG 
__----E_ 

p ax;axJ: 

2 !!$ a;,; _ azg + __ 

3 h J b ax;ax;’ 

(17) 

Multiplying (17) by T, averaging, and introducing 
the variable rj = xi - xj gives 

I a27 

P aoarji 
(18) 

Where the velocity gradient is again assumed to 
be uniform and in the x,-direction. Similarly, 

1 Pp7r aas ._ - 
P &Sri 

:2zag_x. (19) 
2 1 z 

In order to simplify (13), (14), (15), (18), and 
(19), and because of the physical significance of 



spectral quantities, we introduce the following 
three-dimensional Fourier transforms [IO]: 

q(r) -= j+“_oo yj(x)eiror dx (20) 

G(r) = I”__, yi(x)ef**r d% (21) 

z(r) = j”_m 8(x)&r dx (221 

z(r) = f”-@ ~~~(%}ei~‘* dx (23) 

F(r) = JZ, S(x)eiK*r dK (24) 

Tp’(r) = j?, t;‘(x)eii*r dx, (25) 

where x is known as the wave number vector 
and dw = dKIdtcZdKQ. The magnitude of x has 
the dimension l/length and can be considered 
to be the reciprocal of an eddy size. The dot 
product x’r could also be written as K~Q. Thus, 
differentiation of, say, Tq with respect to PE 
will muttiply its Fourier transform yf by iK& 

Inversely, multiplication of a quantity by rk 
will differentiate its Fourier transform by itk 
and multiply it by i. Taking the Fourier trans- 
forms of (13), (14), (15), (18), and (19) and 
assuming that the turbulence is weak enough for 
triple correlations to be negligible in comparison 
with double correlations result in 

and 

where use is made of the fact that KkICk = 

K; + K; + K,2 = KS. Substituting (29) and (30) 
into the right-hand sides of (26) and (27), 
letting i = j z= 2, and comparing the resulting 
equations, shows that y2 = ri for all times if 
they are equal at an initial time. Here it will be 
assumed that the temperature ~uctuations are 
initially zero, so that the above relation will hold, 
If 

au,px, = a (31) 

and 

we finally obtain 

a% -- - 
at 

= 

and 
(33) 

as 
_ - QK1 zZ = - 2&J, - 2alc26. ar (34) 

SOLUTION OF SPECTRAL EQUATIONS 

In order to obtain solutions of (33) and (34) 
it will be assumed, as in [9], that the turbulence 
is initially isotropic, although it is not, of course, 
isotropic at later times. 

The expression for & in (33), which is the 
Fourier transform of z, has already been 
obtained in [9]. This expression is 

UKl(t - &)I2 + Kj]‘(K; + K;) 

I27r%c4 

1 -. 
P 

(299 

TURBULENT HEAT TRANSFER AND TEMPERATURE FLUCTUATIONS 261 



where Jo and to are constants that depend on For Pr # 1, the solution for y2 can be written as 
initial conditions. For a Prandtl number of I 
the solution of (33) is b J,j(K’f -j- K;) 

ye - 
CEK,K’ 127r2 

K2 eXp 

1 

2V(t - to) {KY -t- [K2 + UKc,(t -- &,)I2 + K;12 

[ 

K2 + lZKIKs(t - to) + ; C?K:(t - to)2 

II 

; 

y2 
. 

KY + ; + K; 

Jo+; + 1% + a’& - to)]’ + K:}“(K: + ‘@” - 2V (t - to) [K2 + UKlK2(t - to) 

LIZ 
1 27T2UKl 

-t + a2K:(t - to)2] ) 

. b tEiIl-‘--KZ- -j-f[K,, K2 + UKc,(t - to), Kg] 
(K; + K;)1’2 

(36) 

where f is a function of integration. The method 
of solution is given in [ll]. In order to evaluate 
f, it is assumed that the temperature fluctuations (394 
are zero for t = to. Thus substituting yz = 0 
for t = to in (36), The expression for the Fourier transform of 

zfor a Prandtl number of 1 is obtained by 

f ('% K27 K2) 
solution of (34): 

.b(K; + K; + K;)2(K: + K;)1’2 b tan_l 

1 27f2UKl 
s = ++; + [K,+ UK1 (t - @I2 + K::” b2 

1 2.rr2U2K; 

F;-FKT,e (37) eXp {- h(t - to) [K” + lZK,K,(t - to) 

or + g U2K: (t - to)21 )- 

fb 1, Kz + a'& - to>, '$1 2 

J,J {K’; + [K2 + UK,(t - &)I2 + K;}“(K; + K:;)1’2 
= _ ~~ ~_~_~._ ~~~__~_~_____. _ ~~ 

12.rrzaK1 (40) 

. h tan_l Kz + %(t - to) 
(38) 

where 6 was set equal to zero for t -= to. 
(;y+ Kipk * The spectral quantities yZ and 6 are functions 

of the components of the wave number vector 
Substitution of (38) in (36) gives, for the Fourier x as well as of its magnitude. It is somewhat 

transform of zi for a Prandtl number of 1, easier to interpret quantities that are functions 
only of the magnitude K. We can obtain such 

./o {KT + [K2 $ aKc,(t - to)12 + Ki}“(K: + Ki)l” 
quantities in the usual way by integrating y2 

Y2 = --- ----~~ 
t h2UK1K2 

and 6 over all directions in wave number space. 
Thus, define a quantity I’, by the equation 

. b exp{--2v(f - lo) 

[K” + aK,K,(t -- to) + 4 U2K:(t - t~)~]} 
G,(K) ],; rz(n) dA(x) (41) 

where A is the area of the surface of a sphere 
of radius K. Then, since 
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[let Y = 0 in (20)], P8 CIK gives the contribution 
from wave number band dK to z. Thus a 
plot of F.. against K shows how contributions to 
z, are distributed among the various wave 
numbers or eddy sizes. 

Equations (39) and (40) can be written in 
terms of spherical co-ordinates by setting 

u1 = K cos 46 sin 0, K~ = K sin + sin 0, 

Kg = K COS 8. (43) 

RESULTS AND DISCUSSION 

Discussion of computed spectra 
Equations (39), (40), (44), and (45) can be 

converted to dimensionless form by introducing 
the variables yz, a*, K*, 8, Pl, and 4%. (These 
quantities are defined in the Nomenclature.~ 
Calculated spectra of G and 7 for various 
values of dimensionless velocity gradient a* 
are plotted in Figs. 1 and 2. The integrations in 
(44), (45), and (39a) were carried out numerically. 

Then (41) becomes - 0006 

r,(K) = j; j”f’ Y~(K, 4, e)K2 Sin ti d$ do. (44) -0,005 

A similar equation for 6 integrated over all ~-o.oo~ 

directions in wave number space is G. 

il(~) -= fi: f$” a(~, 4, 8)K2 sin t? d$ de. (45) f-Om3 

Letting r = 0 in (22), c -o*ooz 

p;;i:-;;dd/c (46) - 0.001 

so that, as in the case of I’,, d dlc gives contri- 
butions from the wave number band dK to ?? 

0 

-0*020 r a*= V-C) d‘+/d#p 

M (cf 
FIG. I. Dimensionless spectra of TX for uniform transverse velocity and temperature gradients. 

(a) Prandtl number = I. (b) Prandtl number = 0.01. (c) Prandtl number = JO. 
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I.’ ““*(,.,)‘~2K 
0 

FIG. 2. Dimensionless spectra of Tfor uniform trans- 
verse velocity and temperature gradients. Prandtl 

number = 1. 

When plotted using the similarity variables 
shown, the curves for zero velocity gradient do 
not change with time, so that comparison of the 
various curves indicates how the velocity 
gradient will alter the spectrum. Thus the curves 
in Figs. 1 and 2 that lie above those for a* = 0 
indicate that for those cases zs or f at a parti- 
cular time is greater than it would be for no 
velocity gradient. The turbulence itself is, of 
course, decaying with time. Fig. 1 shows the 
effect of Prandtl number on the spectrum of - 
7~~. As Prandtl number increases, the peaks of 
the spectra move toward the higher wave 
number region, the change being greater at the 
lower values of a*. High wave numbers corres- 
pond to small eddies, inasmuch as the wave 
number represents the reciprocal of an eddy 
size (or wave length). 

For zero velocity gradient the results are the 
same as those obtained by Dunn and Reid [5]. 
As the velocity gradient increases, the peaks 
of the spectra of z move to lower wave 
numbers because the spectrum of the production 
term b+,, in (33) moves to the left (see Fig. 5, 
reference [9]). Since the production term in the 
equation for the spectrum of 7, (34), is propor- 
tional to yZ, the peaks of the spectra of f also 
move to lower wave numbers. 

The spectra change from approximately 
symmetric curves to curves having more gradual 

slopes on the high wave number sides as a* 
increases. The changes in shape of the spectra 
are apparently caused by a transfer of acitivity 
from low wave numbers to high wave numbers 
or from big eddies to small ones. This transfer is 
generally associated with triple correlations [7], 
but in the present case, where triple correlations 
are neglected, it is associated with the velocity 
gradient. Thus we can interpret the second terms 
in (33) and (34) as transfer terms. In order to do 
this, note that r2 a7u;/Lk, in (13) is related to 
ICI &/8K2 in (33) by 

aTT; m 
“z= - s 65 

K1 - Per drr. 
--co 8Kz 

(47) 

For r = 0, this becomes 

s an 

K %dx =() 

_m 1 aK, (48) 

Similarly, in (34) 

s 

cc as 
K --ddK =O. 

_a 1 aK, (49) 

Thus these terms give zero total contribution to 
az/at or to @/at. However, they can alter 
the distribution in wave number space of contri- 
butions to az/at or aF/;ijat, and thus can be 
interpreted as transfer terms. A similar term in 
the equation for z, was obtained in [9]. 

The expressions for the transfer terms in 
(33) and (34) can be integrated over all directions 
in wave number space by using equations 
similar to (44) and (45) in order to obtain 
quantities that are functions only of K and 
dU,/dx,. A plot of the integrated transfer term 
corresponding to s;i is given in dimensionless 
form for a Prandtl number of 1 in Fig. 3. 
This term corresponds to the second term in (34) 
with the exception that it has not been multi- 
plied by a. The total area enclosed by each 
curve is zero, in agreement with (49). The curves 
are predominately negative at low wave numbers 
and positive at higher ones, so that, in general 
contributions to 7 are transferred from low 
wave numbers to high ones. In this way the 
higher wave number portions of the spectra 
of f in Fig. 2 are excited by the transfer of 
activity into those regions, so that the shapes 
of the spectra are altered. This effect is similar to 
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Fro. 3. Dimensionless spectra of transfer term due to mean velocity gradient in spectral equation for ;i: 
Prandtl number = 1. 

that due to triple correlations [7]. In the present 
case a natural explanation of the effect is that 
the transfer to higher wave numbers is due to the 
stretching of the vortex lines in the turbulence 
by the velocity gradient. The velocity gradient 
should also be able to compress some of the 
vortex lines, particularly at low velocity gradients 
where the orientation of the vortex lines would 
tend to be random. This might explain the small 
amount of reverse transfer at low wave numbers 
and low velocity gradients in Fig. 3. 

Production, temperature fluctuation, and conduc- 
tion regions 

By analogy with the equation for turbuIent 
energy in [9], one can interpret the third term 
in (34) as being responsible for the production of 
temperature fluctuations by the action of the 
mean temperature gradient on the turbulent 
heat transfer z. In the corresponding produc- 
tion term in the turbulent energy equation [9] 
the mean velocity gradient does work on the 
turbulent shear stress. The last term in (34) is 
the conduction or dissipation term and tends to 
destroy the temperature fluctuations by con- 
ducting heat away from regions of high local 
temperature. This action is similar to the action 
of viscosity on the velocity ff uctuations. 

The production and conduction terms in (34) 
can be integrated over all directions in wave 

number space by substituting r, and d for ‘yz 
and 6 respectively in those terms. These terms, 
together with the spectrum off are plotted in 
normalized form in Figs. 4a, b for two values 
of a* and a Prandtl number of 1. For the low 
dimensionless velocity gradient the production, 
temperature fluctuation, and conduction regions 
are but slightly separated. On the other hand, for 
the high velocity gradient (a* = SO), the pro- 
duction takes place mostly in the low wave 
number or big eddy region and the conductive 
attenuation occurs in the high wave number 
region. The conductive attenuation occurs 
mostIy in the high wave number region because 
conduction effects tend to “smear out” the 
small-scale temperature fluctuations more readily 
than the large ones. 

We can summarize the history of the tempera- 
ture fluctuations at high velocity gradients 
somewhat as follows: the temperature fluctua- 
tions are produced by the mean temperature 
gradient mainly in the big eddy region, This 
temperature fluctuation activity or “energy” is 

transferred from the big temperature eddies to 
smaller ones by the action of the velocity 
gradient. Finally the temperature “energy” is 
dissipated by conduction effects in the small 
eddy region. 

The separation at high velocity gradients of the 
three regions shown in Fig. 4b is similar to the 
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V4 
FIG. 4. Comparison of production, temperature 
fluctuation and conduction spectra from spectral 
equation for z. Prandtl number ~z I. Curves are 
normalized to same height. 

(a) a* = (t - !,,)dUl/dx2 = 1. 
(b) a* =:- (t t,,) dU,/dx, --: 50. 

separation of the production, energy-containing, 
and dissipation regions associated with the 

turbulent energy G/2. For comparison, a plot 
of these regions for an a* of 50 is given in Fig. 5. 
These curves were obtained from equations 
given in [9]. 

Temperature-velocity correlation coeficient 
The temperature-velocity correlation coeffici- 

ent as introduced by Corrsin [4], is defined as 

ZJ(s;i 2) 1’2. For perfect correlation between T 
and h, this coefficient will have a value of 1. 
The coefficient can be calculated by measuring 
the areas under the spectrum curves in Figs. I 
and 2 and in Fig. 5 of [9]. A plot of the tempera- 
ture-velocity correlation coefficient against 

+?i “l/q,., p* 
0 

FIG. 5. Comparison of production, energy, and 
dissipation spectra from spectral equation for Irill, 

[(I+ (I t,,) dU,/dx, = SO]. 

dimensionless velocity gradient is given for a 
Prandtl number of I in Fig. 6. For zero velocity 
gradient, perfect correlation between the tem- 
perature and velocity fluctuations is indicated. 
It should be mentioned that this result applies 
only to a Prandtl number of 1. The Prandtl 
number dependence of the coefficient for zero 
velocity gradient is given by equation (78) of 
reference [5]. As the velocity gradient increases, 
Fig. 6 indicates that the correlation between the 
temperature and velocity is partially destroyed. 
At a value of a* of 50 the correlation coefficient 
has decreased to about 0.5. 

Ratio of eddy d$iisicities jor heat transfer to 
momentum transfer 

The eddy diffusivities for heat transfer and for 
momentum transfer are defined as 

and 

(50) 

(51) 

The eddy diffusivity ratio Q/C is of considerable 
importance in the phenomenological theories 
of turbulent heat transfer and is usually assumed 
to be one [l, Section E]. In fact that assumption 
gives the best agreement between analysis and 
experiment, except, possibly at low Prandtl or 
Peclet numbers [ 121, [13]. A dimensionless eddy 
diffusivity for heat transfer v5j2(t - L,)~/~$J~ 
can be obtained from the areas under the curves 
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20 25 30 35 40 45 
a*= (t-t,) d&/dxp 

FIG. 6. Variation of temperature-velocity correlation coefficient with dimensionless velocity 
gradient. Prandtl number = 1. 

0 
I.0 2 4 6 6 IO 20 40 60 80 IO0 

a*= b/,1 dW,/d& 

FIG. 7. Variation of ratio of eddy diffusivity for beat transfer to that for momentum transfer 
with dimensionless velocity gradient. 

in Fig. 1. A simifar dimensionless eddy diffusi- 
vity for momentum transfer is given in Fig. 9 
of reference [9]. The ratio E&/E is plotted in 
Figs. 7 and 8. Fig. 8 is included inasmuch as the 
eddy diffisivity ratio for a* = 0 is not given in 
Fig, 7. This case corresponds to isotropic turbu- 
lence and can be calculated from the results in 
[5] and 191. For small velocity gradients ~ft/r is 
greater than 1 except for the low Prandtl 
number. However, as the velocity gradient 
increases, Q/G ultimately decreases and 
approaches I at large velocity gradients. This 
is shown on a spectral basis in Fig. 9, where the 
dimensionfess spectra of rh and E for a Prandtl 

number of 1 are compared. As the velocity 
gradient increases, the spectrum curves of E& 
and E approach each other rapidly in the high 
wave number or small eddy region and some- 
what more sIowIy in the low wave number 
region. 

The approach to 1 of e&/e as the velocity 
gradient increases, occurs at all Prandtf numbers. 
This can be seen by inspection of (39a) which 
indicates that for large values of the velocity 
gradient a, the effect of Prandtl number on yz 
and thus on oh is negligible. However, the effect 
of Prandtl number is much greater at low values 
of Pr than at higher ones. This is because the 
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FIG. 8. Variation of E~/E with Prandtl number for 
isotropic turbulence with velocity gradient = 0. 

terms in (39a) which contain Prandtl number 
vary much more rapidly with low values of that 
quantity than with high ones. 

Fig. 7 indicates that as the velocity gradient 
increases, the approach of Q/E to 1 is most rapid 
for Prandtl numbers on the order of one and 
least rapid for very low Prandtl numbers. 

It is of interest to compare the various terms 
in the differential equations for yz/b and &Ja 
at high values of a. The quantities yz/b and +Ja 
will. when integrated over wave number space, 
give Eh and E. iquation (33) can be 
terms of y2/b as 

written in 

0’ = (f -$,) d U,/dx2 

From [9] 

%PI&) a(4,,/a) 

___ - aK1 aK2- at 

(53) 

These equations for yzjb and for ~#&a are the 
same except for the last term in (52) and the 
last two terms in (53). It appears, however, from 
the forms of the equations that these terms 
should not be important for high values of a. 
The next to the last term in (53) arises from the 
pressure fluctuations. 

Although (52) and (53) are similar for large 
values of a, the initial conditions for y,/b and 
&/a are different, the initial form for &2 being 
given by equation (43) in reference [9], whereas 
yZ is initially zero. However, a numerical check 
indicates that y2/b and &/a, as well as the 
integrated values Eh and E, are essentially equal 

- SPECTRUM OF E; 
---- SPECTRUM OF .c* 

0 
I I I I I 

0.6 I.2 I.6 2.0 2.4 2.6 3.2 3.6 4.0 

#p’ vt/2(& b )“2K 

FIG. 9. Comparison of spectra of Q with those of E. Prandtl number = 1. 
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for large values of a*. This suggests that the 
initial conditions have a negligible effect on the 
results for large times or velocity gradients. 

It is hard to make comparisons between the 
present results and a steady state pipe flow or 
boundary layer inasmuch as a* contains time. 
However, we can make a rough estimate of the 
order of magnitude of a* for a steady state case 
as follows. From the turbulent energy spectra 
in [9], Fig. 7 K:,,_~ - 1. Then an average 
length, 1 haverage = L, associated with the 
turbulence is [u(t - t0)]1/2. Let 6 be the radius 
of the pipe or the thickness of the boundary 
layer and U be a characteristic mean velocity. 
Letting t - to -La/v (see above), dU,ldx, - U/S, 
and L - 0.36, a* will be on the order of O-1 US/v. 
Thus for values of mean flow Reynolds numbers 
usually obtained in the turbulent flows, Q/E, 
according to Fig. 7, will probably be close to 1 
for gases and liquids. For liquid metals Q/C may 
be less than 1, in qualitative agreement with those 
analyses which use a modified mixing-length 
theory to account for heat conduction to or 
from an eddy as it moves transversely in a mean 
temperature gradient [13], [14]. In making the 
above comparisons, it should, of course, be 
remembered that the present calculations are 
for an idealized case which has only a partial 
correspondence to a passage or boundary layer. 
A discussion of possible differences between 
the two cases is given in reference [15]. 
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Rbume-A partir des equations de I’tnergie et de Navier-Stokes, on obtient des equations pour les 
correlations entre temperatures et vitesses en deux points dans un champ turbulent homogene. Bien 
que la vitesse moyenne soit uniforme et qu’il existe des gradients de temperature dans le champ, la 
turbulence decroit en fonction du temps. On obtient les solutions en mettant les equations sous forme 
spectrale, en prenant leur transformees de Fourier et en supposant que la turbulence est suffisamment 
faible pour que les correlations triples soient negligeables devant les correlations doubles. Les spectres 
de la transmission de chaleur turbulente et du carrt moyen des fluctuations de temperature sont 
calcules en fonction du gradient de vitesse sans dimensions. On calcule Cgalement le rapport de la 
diffusivite thermique turbulente au transport de quantitt de mouvement. On montre que le rapport 
de diffusivite turbulente tend vers I’unite aux gradients de vitesses ileves, quel que soit le nombre de 
Prandtl. Toutefois, il tend plus rapidement vers 1 pour les nombres de Prandtl voisins de I’unite. 
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Zusammenfassung-Zur Korrelation von Geschwindigkeiten und Temperaturen an zwei Punkten 
eines homogenen turbulenten Feldes wurden ZusammenhLnge aus den Navler-Stokes-Gleichungen 
und den Energiegleichungen ermittelt. Trotz einheitlicher mittlerer Geschwindigkeits- und Tempera- 
turgradienten im Feld nimmt die Turbulenz mit der Zeit ab. Liisungen wurden durch Umschreiben der 
Gleichungen in Spektralform mit Hilfe ihrer Fouriertransformationen erhalten und der Annahme. 
dass die Turbulenz fiir Dreifachkorrelationen gegeniiber Doppelkorrelationen vernachllssigbar 
gering ist. Die Spektra des turbulenten Wgrmeiiberganges und der mittleren quadratischen Tem- 
peraturschwankung wurden als Funktion dimensionsloser Geschwindigkeitsgradienten berechnet. 
Das VerhPltnis von turbulentem Energie- zu Impulsaustausch liess sich ebenfalls ermitteln. Es wird 
gezeigt, dass sich dieses Austauschverhiiltnis beigrossen Geschwindigkeitsgradienten unabhangig von 
der Grbsse der Prandtlzahl dem Wert Eins nlhert, die AnnBherungsgeschwindigkeit an I aber ftir 

Prandtlzahlen in der Grtissenordnung I am griissten ist. 

hUlUT&l(Wl--I/I:3 )‘~‘~1111t21141ii ~kWbe-~TOIic~l II 11~~“:11”“” WepI~4i41 l3bIUt!,~t!IIbI y~ral3IIt’lIIl>I &lIJI 

IiOp~eJIH~4lll 3HaYeHMti CKOpOCTM 4i TeMIIC~KITJ’pbI B ;IRYX TOYIlaX O,~IIO~,O)~HO~O T~pi,~.lIeIiTHOIV~ 

110~1~. H~CMOTPH ~a 11an11~11t~ H Irone I1OC’TOHII1ibIX cpe~irnx I’pa~HeIiTOB CIW~OCT~I 11 TN- 

IIepaTypbI, TYp6j7IeIITHOCTb 1% 1Ie.M :laTJ’XaC!T C Te’IeIIIIt’M BpeMelI4f. feIIIeIIIlH IIOJI~Yt:IIbI 

nyT&M cBe~eH4w gpanIIeII4ifi Ii t~I1eI~TpaJIbIIonly IuIfiy, IIcIIo.zb:IoI3aI3 npeo6pa:3onaimn @yp~~ 
41 II~~e~ZIOHUfB, YTO T~p6~~eIITHOcTb ~OCTaTO’IIiO C;rai,LI, YTOi)bl lIpeIIt’6~,eKiTb IiOppeZJS~WIM H 

Me?fQQ’ TpeMH BeJylYHHaMLI B Ilp4fMeHflTb 1IOppe;IRl~4l4I JlC;Kfiy +(BYMH IIt’34iY4iHa>~H. &CI<TpbI 

Tj’p,=$IeHTHOI-0 TennooSMeHa II cpe~IIe~ina~~p:IT~~IIIo~o rtontfGIrr4~H TcMnepaTypbI paccw- 

TaHbI KHK (P~tIii~HR 6e3paLIMepHOrO I’paa44eIITa CliO~OCT41. TaI<Me nOnyYt?IlO OTI1OIIIeHllt’ 

I~oa~~~~tle4ITon ~4$@yaa4f BHX~H rrp4f rrepeiioce TerIjIa II iiepel-ioce 4jrIIynbca. IIoIta:3aao, 

‘IT0 IIpIl 6O~~bIllHX Fpa~HeHTaX CKOpOCTl? C,e:I J”I6Tkk HJI4lRHlilH IipIITt’~“4~‘I r~pall/iT.JIfI 3Hk,YeIIIIt! 

OTHOI”eH4IR IiO~l~~~4lI~~eIITOI3 ~4@c)y:l4W 134iXpFl II~‘Ii’r,~IUIGleTCH 1E t!#lII4iI(t’, ;I ,,pIl YHCJIkIX 

IIpaH;~TJIR IIOpH~lia 1 3TO IIp4lhJIIlHWIIIW lIpO4ll’“O;~IlT U Ii~G_iT’I;IiiIiI4lti IIpOMt:“‘,VTOl< I3~,l’Mt’llIl, 


